745 research outputs found

    Genetic diversity and its impact on disease severity in respiratory syncytial virus subtype-A and -B bronchiolitis before and after pandemic restrictions in Rome

    Get PDF
    Objectives: To scrutinize whether the high circulation of respiratory syncytial virus (RSV) observed in 2021-2022 and 2022-2023 was due to viral diversity, we characterized RSV-A and -B strains causing bronchiolitis in Rome, before and after the COVID-19 pandemic. Methods: RSV-positive samples, prospectively collected from infants hospitalized for bronchiolitis from 2017-2018 to 2022-2023, were sequenced in the G gene; phylogenetic results and amino acid substitutions were analyzed. Subtype-specific data were compared among seasons. Results: Predominance of RSV-A and -B alternated in the pre-pandemic seasons; RSV-A dominated in 2021-2022 whereas RSV-B was predominant in 2022-2023. RSV-A sequences were ON1 genotype but quite distant from the ancestor; two divergent clades included sequences from pre- and post-pandemic seasons. Nearly all RSV-B were BA10 genotype; a divergent clade included only strains from 2021-2022 and 2022-2023. RSV-A cases had lower need of O2 therapy and of intensive care during 2021-2022 with respect to all other seasons. RSV-B infected infants were more frequently admitted to intensive care units and needed O2 in 2022-2023. Conclusions: The intense RSV peak in 2021-2022, driven by RSV-A phylogenetically related to pre-pandemic strains is attributable to the immune debt created by pandemic restrictions. The RSV-B genetic divergence observed in post-pandemic strains may have increased the RSV-B specific immune debt, being a possible contributor to bronchiolitis severity in 2022-2023

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    Get PDF
    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review

    A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    Full text link
    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, "cloning" the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.Comment: Correspondig Author: C. Rubbia (E-mail: [email protected]), 33 pages, 11 figure
    • …
    corecore